

ReSatron GmbH Eindhovener Str. 58 D-41751 Viersen Telefon (+49) 02162 - 45 06 80 Telefax (+49) 02162 - 45 03 04 www.resatron.de eMail: info@resatron.de

RSHF 75 D DeviceNet

Absoluter multi-turn Winkelcodierer

- Schockfest bis 200 q
- Betriebsarten parametrierbar
- Preset-Wert parametrierbar
- Skalierung parametrierbar
- Singleturn Auflösung bis 13 Bit
- Multiturn Auflösung bis 29 Bit

Technische Daten

Codeart

Binär

Max. Auflösung

Singleturn

10 Bit = 1.024 S/U 13 Bit = 8.192 S/U

Multiturn

1.024 S/U x 65.536 U 26 Bit = 29 Bit = 8.192 S/U x 65.536 U

Elektrische Daten

Betriebsspannung UB = 10...30 VDC

Stromaufnahme Max. 100 mA (ohne Last), bei

24 VDC

Codewechselfrequenz 800 kHz

Genauigkeit 0,025 ° bei 400 kHz

0.05° bei 800 kHz

Mechanische Werte RSHF 75

Drehzahl (mechanisch) ≤ 6.000 min ⁻¹ Drehzahl (elektrisch) \leq 6.000 min ⁻¹ Anlauf-Drehmoment < 0.015 NmWellenbelastung < 40 N radial. < 20 N axial 2 x 10⁻⁶ kgm² Trägheitsmoment Gewicht ca. 700 q

Mechanische Werte RSHF 90

Drehzahl (mechanisch) ≤ 3.800 min ⁻¹ Drehzahl (elektrisch) \leq 6.000 min ⁻¹ Anlauf-Drehmoment < 0.015 NmWellenbelastung < 40 N radial, < 20 N axial Trägheitsmoment 200 x 10⁻⁶ kgm² Gewicht ca. 830 g

RSHF 75 D 05/03 - 110 Änderungen vorbehalten

Mechanische Werte RSHF 120

Drehzahl (mechanisch) ≤ 2.000 min ⁻¹

höhere auf Anfrage

Drehzahl (elektrisch) \leq 6.000 min ⁻¹ Anlauf-Drehmoment < 0.015 Nm Wellenbelastung < 40 N radial,

< 20 N axial

Trägheitsmoment 1100 x 10⁻⁶ kgm²

Gewicht ca. 1.200 g

Material

Gehäuse Stahl Flansch Aluminium Bushaube Aluminium

Umgebungsbedingungen

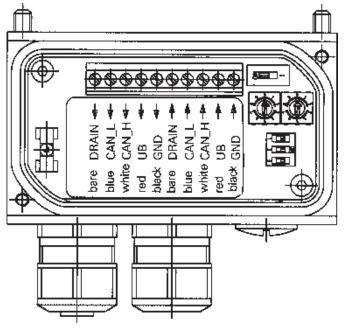
Vibration DIN EN 60068-2-6

 \leq 200 ms⁻² (16...2000 Hz)

Schock DIN EN 600068-2-27 \leq 2.000 ms², 6 ms

Arbeitstemperatur - 20...+ 85° C

Lagertemperatur - 20...+ 85° C


Luftfeuchtigkeit Max. relative Feuchte 95 %

nicht betauend

Schutzart IP 54

DIN EN 61000-6-2 Störfestigkeit Störaussendung DIN EN 61000-6-4

Blick in die Bus-Haube

Beschreibung der Anschlüsse

CAN_L Negative serielle Datenleitung

Paar 1 und Paar 2

CAN H Positive serielle Datenleitung

Paar 1 und Paar 2

DRAIN Schirmanschluss

UB Versorgungsspannung 10...30 VDC

GND Masseanschluss für UB

(Klemmen mit gleicher Bezeichnung sind intern miteinan-

der verbunden)

Option zusätzliche inkrementale Spuren A + B, 5pol.

Einstellen der Teilnehmeradresse

Stecker 10...30 VDC, 30 mA.

Einstellen der Baudrate DeviceNet

Baudrate	Einstellung Dip-Schalter				
	1	2	3		
125 kBit/s	Χ	OFF	OFF		
250 kBit/s	Χ	OFF	ON		
500 kBit/s	Χ	ON	OFF		
125 kBit/s*	Χ	ON	ON		

X = ohne Funktion

 Diese Schalterstellung ist nicht definiert, deshalb intern auf den Default-Wert 125 kBit/s gesetzt.

DeviceNet Merkmale

Bus-Protokoll DeviceNet

Device-Profil Proposal:

Device Profil for Encoders V 1.0

Betriebsarten I/O-Polling, Cyclic und

Change of State.

Preset-Wert Mit dem Parameter

"Preset" kann der Geber auf einen gewünschten Prozess-Istwert gesetzt werden, der einer definierten Achsposition des Systems entspricht. Der Offsetwert zwischen Geber-Nullpunkt und mechanischem Nullpunkt des Systems wird im

Geber gespeichert.

Drehrichtung Über den Betriebsparameter

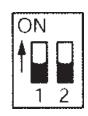
kann die Drehrichtung, in der der Ausgangscode steigen bzw. fallen soll, parametriert werden.

Skalierung Es können die Schritte pro Um-

drehung und die Gesamtauflösung parametriert werden.

Diagnose Während des Betriebes werden nachfolgende Punkte überwacht:

Stetigkeitsprüfung des CodesÜberschreitung der zuläs-


sigen Signalfrequenz
- LED-Ausfall, Alterung

- Empfänger-Ausfall

- Codescheibe, Glasbruch

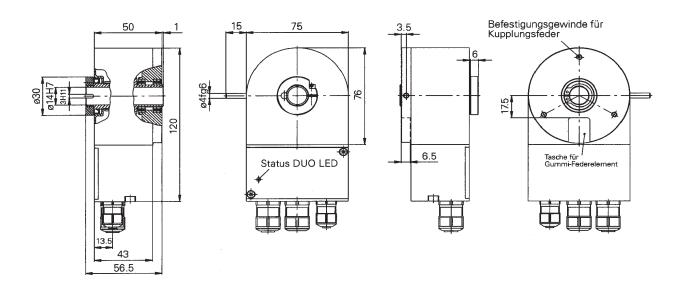
- Spannungsversorgung des elektronischen Getriebes.

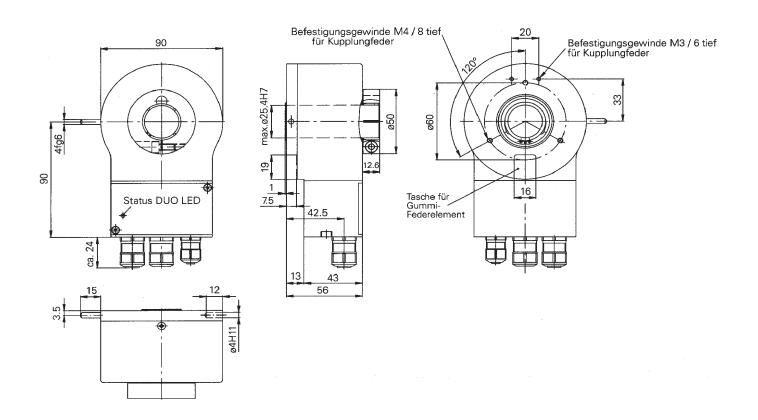
Einstellungen der Abschlusswiderstände

ON = Letzter Teilnehmer

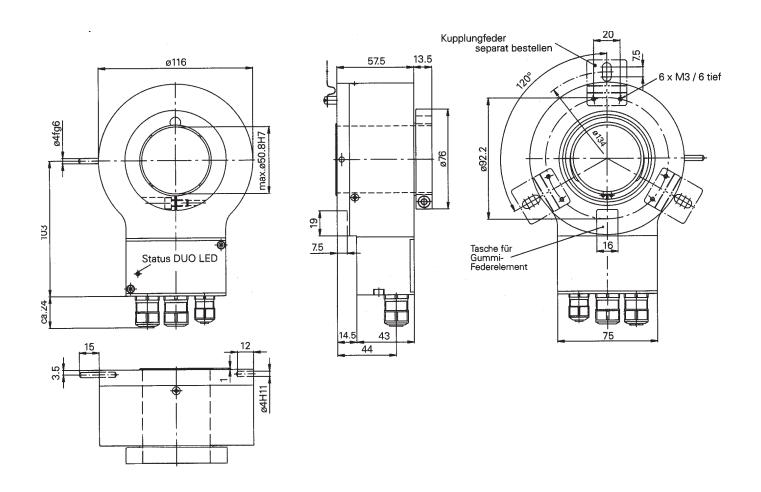
Adresse über Drehschalter

einstellbar. Beispiel:


Teilnehmeradresse 23


OFF = Teilnehmer X

Defaulteinstellung


10 kbit/s, Knotennummer 0

Maßzeichnung RSHF 75 und RSHF 90 Device Net

Maßzeichnung RSHF 120 Device Net

Bestellangaben

Gebertyp	Bit/Umdrehung	Umdrehungen	Code	Spannung	Flansch	Abgang
RSH 75 D		12 = 4096 U	B = Binär	3 = 10 - 30 VDC	1 = Ø 14 mm, Gewindestift	DS = Kabeldose seitl. Abgang
RSH 75 D	13 = 8192 S/U				2 = Ø 12 mm, Klemmring	
RSH 75 D					3 = Ø 14 mm, Klemmring	
RSH 90 D					bis 25,4mm auf Anfrage	
RSH 120 D					bis 50,8 mm auf Anfrage	
RSHD	13	12	В	3		DS